Supracondylar Fractures

Henry J. Iwinski Jr., MD
Anything New?

• Neurologic and vascular injury associated with supracondylar humerus fractures and ipsilateral forearm fractures
 • Is there a higher risk for compartment syndrome?
 • Is there a higher rate of neurologic injury?
• How much do post-treatment x-rays assist in management?
 • 1 week, 3 weeks, 6 weeks, 3 months, 6 months?
 • Do we need so many?
Neurologic and Vascular Injury Associated with Supracondylar Humerus Fractures and Ipsilateral Forearm Fractures in Children

Henry J. Iwinski Jr., MD
Chief of Staff, Shriners Hospital Lexington
Professor of Orthopaedic Surgery, University of Kentucky

Ryan D. Muchow, MD
Anthony I. Riccio, MD
Christine A. Ho, MD
Robert L. Wimberly, MD
BACKGROUND

• 5% Supracondylar Humerus Fractures (SCH) associated with ipsilateral Forearm Fracture (FFx)
BACKGROUND

• 5% Supracondylar Humerus Fractures (SCH) associated with ipsilateral Forearm Fracture (FFx)

• Neurologic Injury – 20-25%

• Pulseless Extremity – 6-9%

• Compartment Syndrome – 9%

Roposch et al, *JPO* 2001
Tabak et al, *JBJS Br* 2003
Blakemore et al, *CORR* 2000
PURPOSE

• To evaluate the acute neurologic and vascular complications associated with ipsilateral supracondylar humerus and forearm fractures in pediatric patients
METHODS

• Retrospective case-control study – Children’s Medical Center Dallas

• Study population:
 • Supracondylar Humerus Fracture (SCH) and ipsilateral Forearm Fracture (FFx)
 • Gartland Type II and III SCH
 • FFx = BBFFx, DRF, Ulna fx, olecranon fx, and Monteggia

• Control population:
 • Isolated Supracondylar Humerus Fracture
 • Gartland Type II and III SCH
METHODS – Study Population

Ipsilateral SCH and FFx

IRB-Registered Trauma Database
2001 – 2012

- 93 patients
- 16 – no Ipsi SCH and FFx
- 77 patients

EMR Billing Query
2008 – 2012

- 1575 SCH Fx
- 1498 – no Ipsi FFx
- 73 patients

150 patients
METHODS – Control Population

Isolated Type II and III SCH

- IRB-approved, retrospective review 2004-2007
 - Previously reported cohort of patients

1228 patients
Supracondylar Humerus and Forearm Fractures

SCH

- Type II = 40 (26.7%)
- Type III = 110 (73.3%)

Forearm Fracture

- BBFFx - 73
- DRF - 57
- Buckle Fx - 16
- Ulna Fx - 4
- Monteggia - 1
Supracondylar Humerus and Forearm Fractures

150 patients

- 73 BBFFx
 - 23 CR
 - 11 Nerve Palsies
 - 8 Nerve Palsies

- 56 DRF
 - 15 CR
 - 32 PP
 - 15 CR

- 16 Buckle Fx
 - 16 splint
 - 2 Nerve Palsies
 - 1 Pulseless

- 4 Ulna Fx
 - 1 CR
 - 1 PP
 - 1 Nerve Palsy

- 1 Monteggia
 - 1 PP

No cases of compartment syndrome
SCH and FFx - Nerve Palsy and Pulseless Extremity

22 Nerve Palsies

- AIN=9
- PIN=8*
- ULN=3*
- AIN/PIN=1
- AIN/ULN=1

* 2 patients w/ persistent nerve palsies at final f/u

6 Pulseless Extremities

- 5 pulses returned in OR
- 1 pink, perfused hand
RESULTS – Nerve Palsy Associated w/ FFx Reduction

Nerve Injuries

- 150 patients
 - FFx Reduction: 95 patients
 - 18 nerve injuries
 - No FFx reduction: 55 patients
 - 4 nerve injuries

18.9% v. 7.3%, p=0.05

Vascular Compromise

- 150 patients
 - FFx Reduction: 95 patients
 - 4 pulseless extremities
 - No FFx reduction: 55 patients
 - 2 pulseless extremities

4.2% v. 3.6%, p=0.86
Ipsilateral SCH and FFx v. Isolated SCH

- **SCH and FFx**
 - Age = 6.8
 - SCH Classification:
 - Type II = 40 (26.7%)
 - Type III = 110 (73.3%)
- **SCH**
 - Age = 5.8
 - SCH Classification
 - Type II = 355 (28.9%)
 - Type III = 873 (71.1%)

Nerve Injury vs. Pulseless Extremity vs. Compartment Syndrome

<table>
<thead>
<tr>
<th></th>
<th>Nerve Injury</th>
<th>Pulseless Extremity</th>
<th>Compartment Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH and FFx</td>
<td>14.7% (22/150)</td>
<td>4.0% (6/150)</td>
<td>0%</td>
</tr>
<tr>
<td>SCH</td>
<td>7.8% (96/1228)</td>
<td>4.1% (50/1228)</td>
<td>0.08% (1/1228)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.006</td>
<td>0.590</td>
<td>-</td>
</tr>
</tbody>
</table>
Ipsilateral SCH and FFx v. Isolated SCH

- SCH and FFx
 - Age = 6.8
 - SCH Classification:
 - Type II = 40 (26.7%)
 - Type III = 110 (73.3%)

- SCH
 - Age = 5.8
 - SCH Classification
 - Type II = 355 (28.9%)
 - Type III = 873 (71.1%)

<table>
<thead>
<tr>
<th></th>
<th>Nerve Injury</th>
<th>Pulseless Extremity</th>
<th>Compartment Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH and FFx</td>
<td>14.7%</td>
<td>4.0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>(22/150)</td>
<td>(6/150)</td>
<td></td>
</tr>
<tr>
<td>SCH</td>
<td>7.8%</td>
<td>4.1%</td>
<td>0.08%</td>
</tr>
<tr>
<td></td>
<td>(96/1228)</td>
<td>(50/1228)</td>
<td>(1/1228)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.006</td>
<td>0.590</td>
<td>-</td>
</tr>
</tbody>
</table>
Ipsilateral SCH and FFx v. Isolated SCH

- **SCH and FFx**
 - Age = 6.8
 - SCH Classification:
 - Type II = 40 (26.7%)
 - Type III = 110 (73.3%)

- **SCH**
 - Age = 5.8
 - SCH Classification
 - Type II = 355 (28.9%)
 - Type III = 873 (71.1%)

<table>
<thead>
<tr>
<th></th>
<th>Nerve Injury</th>
<th>Pulseless Extremity</th>
<th>Compartment Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCH and FFx</td>
<td>14.7% (22/150)</td>
<td>4.0% (6/150)</td>
<td>0%</td>
</tr>
<tr>
<td>SCH</td>
<td>7.8% (96/1228)</td>
<td>4.1% (50/1228)</td>
<td>0.08% (1/1228)</td>
</tr>
<tr>
<td>p-value</td>
<td>0.006</td>
<td>0.590</td>
<td>-</td>
</tr>
<tr>
<td>Study</td>
<td># Pts</td>
<td>Neurologic Injury</td>
<td>Pulseless Extremity</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Roposch et al, JPO 2001</td>
<td>47</td>
<td>23.2%</td>
<td>6.4%</td>
</tr>
<tr>
<td>Tabak et al, JBJS Br 2003</td>
<td>22</td>
<td>22.7%</td>
<td>9.1%</td>
</tr>
<tr>
<td>Blakemore et al, CORR 2000</td>
<td>33</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TSRH Experience 2012</td>
<td>150</td>
<td>14.7%</td>
<td>4.0%</td>
</tr>
</tbody>
</table>
CONCLUSION

• Case-control study SCH and FFx = ↑ incidence neurologic injury
 • 14.7% v. 7.8%
 • No difference in pulseless extremities or compartment syndrome

• Ipsilateral SCH and a FFx requiring reduction = ↑ incidence neurologic injury
 • 18.8% v. 7.4%
 • No difference in pulseless extremities or compartment syndrome
The Utility of Postoperative Radiographs After Pinning of Pediatric Supracondylar Humerus Fractures

Jake Stanfield, MD • Philip Ashley, MD • Laura Blum, MD • Ryan Muchow, MD • Henry Iwinski, MD • Vishwas Talwalkar, MD • Janet Walker, MD • Todd Milbrandt, MD
Impact

• Practice evidence-based medicine

• Reduce costs: $425/radiograph

• Reduce radiation exposure: 0.003mSv
Purpose

• Investigate the frequency at which postoperative radiographs resulted in a change in management following CRPP for SCH fx
Hypothesis

• Only the immediate Post-Operative Radiograph will lead to management decisions following SCH FX eliminating the need for the 3 and 8 week radiographs
Methods

- Single large academic center
- Database queried for all patients treated with CPT code 24538
- January 2008 through December 2013.
- Inclusion
 - Displaced (Gartland type II and III) SCH fractures
 - Complete radiographic data
 - Adequate follow-up
- Exclusion
 - Flexion type
 - Intra-articular
 - Transphyseal
 - Open fractures
Results

• 508 patients identified
• 90 patients excluded
• 418 patients included in final analysis
Demographics

- 418 patients, 208 M & 210 F
- Mean age 5.75 years (std 2.34)
 - 134 type II (32%)
 - 259 type III (62%)
 - 16 type IV (4%)
- Mechanism of injury
 - Fall from playground equipment 116 (28%)
 - Fall from furniture 84 (20%)
- Days to pin removal 26 days
 - First Visit at 8 days
Complications Detected and Changes in Management Initiated

- Fracture Displacement: 3.8%
- Pin Displacement: 4.5%
- Revision Surgery: 1.0%
- Prolonged Immobilization: 1.0%
- N=412

1st Follow-up Visit (7-10 days)
- Fracture Displacement: 3.8%
- Pin Displacement: 4.5%
- Revision Surgery: 1.0%
- Prolonged Immobilization: 1.0%

Pin Removal Visit (3-4 weeks)
- Fracture Displacement: 2.9%
- Pin Displacement: 0.7%
- Revision Surgery: 0.0%
- Prolonged Immobilization: 0.0%

12.6%
Revision Surgery

4 patients required a revision surgery

- 2 pinned by pediatric orthopaedic surgeons
- 2 pinned by adult trauma surgeons

All patients requiring revision surgery

- Type 3
- Initial fixation with 2-pin configuration
Prolonged Immobilization

52 Patients

- Incomplete Healing
- TTP at fracture site
- Unclear reason
- Adult trauma attending
- Parents' request
- Forearm fracture
Changes in Management

- No change in management occurred with final radiographs at 8 weeks visit

- No change in management occurred in any Type II fractures with any radiographs
Conclusions

• Post-operative radiographs rarely led to a change in management (3.5% re-operation)
 • When they did it was found on the first Post-Op x-ray.
• Radiographs at the time of pin removal may be useful
 • 12.6% had changes in management
• Continued Immobilization?
Conclusions

• Radiographs following pin pull were not clinically relevant and should be not be routinely used
• Any follow up radiographs in Type 2 injuries may not be necessary